Multifunctional graphene woven fabrics

نویسندگان

  • Xiao Li
  • Pengzhan Sun
  • Lili Fan
  • Miao Zhu
  • Kunlin Wang
  • Minlin Zhong
  • Jinquan Wei
  • Dehai Wu
  • Yao Cheng
  • Hongwei Zhu
چکیده

Tailoring and assembling graphene into functional macrostructures with well-defined configuration are key for many promising applications. We report on a graphene-based woven fabric (GWF) prepared by interlacing two sets of graphene micron-ribbons where the ribbons pass each other essentially at right angles. By using a woven copper mesh as the template, the GWF grown from chemical vapour deposition retains the network configuration of the copper mesh. Embedded into polymer matrices, it has significant flexibility and strength gains compared with CVD grown graphene films. The GWFs display both good dimensional stability in both the warp and the weft directions and the combination of film transparency and conductivity could be optimized by tuning the ribbon packing density. The GWF creates a platform to integrate a large variety of applications, e.g., composites, strain sensors and solar cells, by taking advantages of the special structure and properties of graphene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multifunctional non-woven fabrics of interfused graphene fibres

Carbon-based fibres hold promise for preparing multifunctional fabrics with electrical conductivity, thermal conductivity, permeability, flexibility and lightweight. However, these fabrics are of limited performance mainly because of the weak interaction between fibres. Here we report non-woven graphene fibre fabrics composed of randomly oriented and interfused graphene fibres with strong inter...

متن کامل

Self-deposition of Pt nanoparticles on graphene woven fabrics for enhanced hybrid Schottky junctions and photoelectrochemical solar cells.

In this study, we demonstrated a self-deposition method to deposit Pt nanoparticles (NPs) on graphene woven fabrics (GWF) to improve the performance of graphene-on-silicon solar cells. The deposition of Pt NPs increased the work function of GWF and reduced the sheet resistance of GWF, thereby improving the power conversion efficiency (PCE) of graphene-on-silicon solar cells. The PCE (>10%) was ...

متن کامل

Hierarchical graphene nanocones over 3D platform of carbon fabrics: a route towards fully foldable graphene based electron source.

A three dimensional field emitter comprising hierarchical nanostructures of graphene over flexible fabric substrate is presented. The nanostructuring is realized through plasma treatment of graphene, coaxially deposited over individual carbon fiber by means of simple aqueous phase electrophoretic deposition technique. Hierarchical graphene nanocone, acting as a cold electron emitter, exhibits o...

متن کامل

Simulate the Dynamic Draping Behavior of Woven and Knitted Fabrics

In this article a practical mass-spring system was developed to simulate the draping of woven and knitted fabrics. The material properties important to fabric drape, including aerial density, tensile, shear, and bending properties were measured using the Kawabata Evaluation System and the experimental data were incorporated into the mass-spring model to simulate the dynamic draping behavior of ...

متن کامل

Stretchable and highly sensitive graphene-on-polymer strain sensors

The use of nanomaterials for strain sensors has attracted attention due to their unique electromechanical properties. However, nanomaterials have yet to overcome many technological obstacles and thus are not yet the preferred material for strain sensors. In this work, we investigated graphene woven fabrics (GWFs) for strain sensing. Different than graphene films, GWFs undergo significant change...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012